Rubberduck Annotations

I wrote about this unfortunately hard-to-discover feature in 2017, but a lot has happened since then, and there’s 5 times more of you now! The wiki is essentially up-to-date, but I’m not sure of its viewership. So here’s a recap of annotations in the late Rubberduck 2.4.1.x pre-release builds, that 2.5.0.x will launch with.

What we call “annotations” are special comments that look like these:

'@Folder("MyProject.Abstract")
'@ModuleDescription("An interface that describes an object responsible for something.")
'@Interface
'@Exposed

'@Description("Does something")
Public Sub DoSomething()
End Sub

Syntax

Rubberduck’s parser includes a grammar rule that captures these special comments, such that we “see” them like any other language syntax element (tokens), and can analyze them as such, too.

The syntax is rather simple, and is made to look like a procedure call – note that string arguments must be surrounded with double quotes:

'@AnnotationName arg1, arg2, "string argument"

If desired, parentheses can be used, too:

'@AnnotationName(arg1, arg2)
'@AnnotationName("string argument")

Whether you use one notation or the other is entirely up to personal preference, both are completely equivalent. As with everything else, consistency should be what matters.

There’s an inspection that flags illegal/unsupported annotations that you, if you’re using this @PseudoSyntax for other purposes, will probably want to disable: that’s done by setting its severity level to DoNotShow in the inspection settings, or by simply clicking “disable this inspection” from the inspection results toolwindow.

Keep in mind that while they are syntactically comments as far as VBA is concerned, to Rubberduck parsing the argument list of an annotation needs to follow strict rules. This parses correctly:

'@Folder "Some.Sub.Folder" @ModuleDescription "Some description" : some comment

Without the : instruction separator token, the @ModuleDescription annotation parses as a regular comment. After : though, anything goes.

There are two distinct types of annotation comments: some annotations are only valid at module level, and others are only valid at member level.

Module Annotations

Module-level annotations apply to the entire module, and must appear in that module’s declarations section. Personally, I like having them at the very top, above Option Explicit. Note that if there’s no declaration under the last annotation, and no empty line, then the placement becomes visually ambiguous – even though Rubberduck correctly understands it, avoid this:

Option Explicit
'@Description("description here")
Public Sub DoSomething() '^^^ is this the module's or the procedure's annotation?
End Sub

Let it breathe – always have an empty line between the end of the module’s declarations section (there should always at least be Option Explicit there) and the module’s body:

Option Explicit
'@Folder("MyProject") : clearly belongs to the module

'@Description("description here")
Public Sub DoSomething() '^^^ clearly belongs to the procedure
End Sub

What follows is a list of every single module-level annotation currently supported (late v2.4.1.x pre-release builds), that v2.5.0 will launch with.

@Folder

The Visual Basic Editor regroups modules in its Project Explorer toolwindow, by component type: you get a folder for your “Modules”, another folder for your “Class Modules”; if you have userforms they’re all under a “Forms” folder, and then the document modules are all lumped under some “Microsoft Excel Objects” folder (in an Excel host, anyway). While this grouping is certainly fine for tiny little automation scripts, it makes navigation wildly annoying as soon as a project starts having multiple features and responsibilities.

In a modern IDE like Visual Studio, code files can be regrouped by functionality into a completely custom folder hierarchy: you get to have a form in the same folder as the presenter class that uses it, for example. With Rubberduck’s Code Explorer toolwindow, you get to do exactly the same, and the way you do this is with @Folder annotations.

'@Folder("Root.Parent.Child")
Option Explicit

The @Folder annotation takes a single string argument representing the “virtual folder” a module should appear under, where a dot (.) denotes a sub-folder – a bit like .NET namespaces. Somewhere deep in the history of this annotation, there’s a version that’s even named @Namespace. “Folder” was preferred though, because “Namespace” was deemed too misleading for VBA/VB6, given the language doesn’t support them: all module names under a given project must still be unique. The Code Explorer toolwindow uses these annotations to build the folder hierarchy to organize module nodes under, but the folders don’t actually exist: they’re just a representation of the annotation comments in existing modules – and that is why there is no way to create a new, empty folder to drag-and-drop modules into.

It is strongly recommended to adopt a standard and consistent PascalCase naming convention for folder names: future Rubberduck versions might very well support exporting modules accordingly with these folder annotations, so these “virtual folders” might not be “virtual” forever; by using a PascalCase naming convention, you not only adopt a style that can be seamlessly carried into the .NET world; you also make your folders future-proof. Avoid spaces and special characters that wouldn’t be legal in a folder name under Windows.

The ModuleWithoutFolder inspection (under “Rubberduck Opportunities”), if enabled, will warn you of modules where this annotation is absent. By default, Rubberduck’s Code Explorer will put all modules under a single root folder named after the VBA project. While this might seem rather underwhelming, it was a deliberate decision to specifically not re-create the “by component type” grouping of the VBE and encourage our users to instead regroup modules by functionality.

@IgnoreModule

The @IgnoreModule annotation is automatically added by the “Ignore in Module” inspection quick-fix, which effectively disables a specific code inspection, but only in a specific module. This can be useful for inspections that have false positives, such as procedure not used firing results in a module that contains public parameterless procedures that are invoked from ActiveX controls on a worksheet, which Rubberduck isn’t seeing (hence the false positives), but that are otherwise useful, such that you don’t necessarily want to completely disable the inspection (i.e. set its severity level to DoNotShow).

If no arguments are specified, this annotation will make all inspections skip the module. To skip a specific inspection, you may provide its name (minus the Inspection suffix) as an argument. To ignore multiple inspections, you can separate them with commas like you would any other argument list:

'@IgnoreModule ProcedureNotUsed, ParameterNotUsed

Alternatively, this annotation may be supplied multiple times:

'@IgnoreModule ProcedureNotUsed
'@IgnoreModule ParameterNotUsed

Use the : instruction separator to terminate the argument list and add an explanatory comment as needed:

'@IgnoreModule ProcedureNotUsed : These are public macros attached to shapes on Sheet1

Note that the arguments (inspection names) are not strings: enclosing the inspection names in string literals will not work.

@TestModule

This was the very first annotation supported by Rubberduck. This annotation is only legal in standard/procedural modules, and marks a module for test discovery: the unit testing engine will only scan these modules for unit tests. This annotation does not support any parameters.

@ModuleDescription(“value”)

Given a string value, this annotation can be used to control the value of the module’s hidden VB_Description attribute, which determines the module’s “docstring” – a short description that appears in the VBE’s Object Browser, and that Rubberduck displays in its toolbar and in the Code Explorer.

Because Rubberduck can’t alter module attributes in document modules, this annotation is illegal in modules representing objects owned by the host application (i.e. “document” modules), such as Worksheet modules and ThisWorkbook.

@PredeclaredId

This annotation does not support any parameters, and can be used to control the value of the hidden VB_PredeclaredId attribute, which determines whether a class has a default instance. When a class has a default instance, its members can be invoked without an instance variable (rather, using an implicit one named after the class itself), like you did every single time you’ve ever written UserForm1.Show – but now you get to have a default instance for your own classes, and this opens up a vast array of new possibilities, most notably the ability to now write factory methods in the same class module as the class being factory-created, effectively giving you the ability to initialize new object instances with parameters, just like you would if VBA classes had parameterized constructors:

Dim something As Class1
Set something = Class1.Create("test", 42)

@Exposed

VBA classes are private by default: this means if you make a VBA project that references another, then you can’t access that class from the referencing project. By setting the class’ instancing property to PublicNotCreatable, a referencing project is now able to consume the class (but the class can only be instantiated inside the project that defines it… and that’s where factory methods shine).

This annotation visibly documents that the class’ instancing property has a non-default value (this can easily be modified in the VBE’s properties toolwindow).

@Interface

In VBA every class modules defines a public interface: every class can Implements any other class, but not all classes are created equal, and in the vast majority of the time what you want to follow the Implements keyword will be the name of an abstract interface. An abstract interface might look like this:

'@Interface
Option Explicit

Public Sub DoSomething()
End Sub

Adding this annotation to a module serves as metadata that Rubberduck uses when analyzing the code: the Code Explorer will display these modules with a dedicated “interface” icon, and an inspection will be able to flag procedures with a concrete implementation in these modules.

@NoIndent

Rubberduck’s Smart Indenter port can indent your entire VBA project in a few milliseconds, but automatically indenting a module can have undesirable consequences, such as losing hidden member attributes. Use this annotation to avoid accidentally wiping hidden attributes in a module: the indenter will skip that module when bulk-indenting the project.


Member Annotations

Member-level annotations apply to the entire procedure they’re annotating, and must be located immediately over the procedure’s declaration:

'@Description("Does something")
Public Sub DoSomething()
    '...
End Sub

As with module annotations, multiple member annotations can be specified for the same procedure – either by stacking them, or enumerating them one after the other:

'@DefaultMember
'@Description("Gets the item at the specified index")
Public Property Get Item(ByVal index As Long) As Object
    '...
End Property

Member annotations that aren’t immediately above the procedure declaration, will be flagged as illegal by the IllegalAnnotation inspection:

'@Description("Does something") : <~ annotation is illegal/misplaced

Public Sub DoSomething()
    '...
End Sub

@Description

This very useful annotation controls the value of the member’s hidden VB_Description attribute, which defines a docstring that appears in the bottom panel of the Object Browser when the member is selected – Rubberduck also displays this content in the context-sensitive (selection-dependent) label in the Rubberduck VBIDE toolbar.

Toolbar label content is dependent on the current selection in the editor and includes the value of the hidden attribute’s value.

@Ignore

Similar to @IgnoreModule, the purpose of the member-level @Ignore annotation is to get specific inspections to ignore the annotated procedure: it works identically.

@DefaultMember

Only one single member of a class can be the class’ default member. Default members should generally be avoided, but they are very useful for indexed Item properties of custom collection classes. This annotation takes no arguments.

@Enumerator

Custom collections that need to support For Each enumeration are required to have a member that returns an IUnknown, and hidden flags and attributes: this annotation clearly identifies the special member, and gets the hidden flags and attributes right every time.

'@Enumerator
Public Property Get NewEnum() As IUnknown
    Set NewEnum = encapsulatedCollection.[_NewEnum]
End Property

@ExcelHotkey

This rather specific annotation works in Excel-hosted VBA projects (as of this writing its absence may cause inspection false positives in other host applications, like Microsoft Word).

When the VBA project is hosted in Microsoft Excel, you can use this annotation to assign hotkeys using the same mechanism Excel uses to map hotkeys to recorded macros.

'@ExcelHotkey "D" : Ctrl+Shift+D will invoke this procedure in Excel
Public Sub DoSomething()
    '...
End Sub

'@ExcelHotkey "d" : Ctrl+D will invoke this procedure in Excel
Public Sub DoSomethingElse()
    '...
End Sub

Note that the annotation will work regardless of whether the argument is treated as a string literal or not – only the first character of the annotation argument is used, and its case determines whether the Shift key is involved in the hotkey combination (all hotkeys involve the Ctrl key): use an uppercase letter for a Ctrl+Shift hotkey.

@Obsolete

Code under continued maintenance is constantly evolving, and sometimes in order to avoid breaking existing call sites, a procedure might need to be replaced by a newer version, while keeping the old one around: this annotation can be used to mark the old version as obsolete with an explanatory comment, and inspections can flag all uses of the obsolete procedure:

'@Obsolete("Use DoSomethingElse instead.")
Public Sub DoSomething()
    '...
End Sub

Public Sub DoSomethingElse()
    '...
End Sub
The argument string appears in the inspection results for each use of the obsolete member.

Test Method Annotations

These annotations have been in Rubberduck for a very long time, and they are actually pretty easy to discover since they are automatically added by Rubberduck when adding test modules and test methods using the UI commands – but since Test Settings can be configured to not include setup & teardown stubs, it can be easy to forget they exist and what they do.

@TestMethod

This annotation is used in test modules to identify test methods: every test must be marked with this annotation in order to be discoverable as a test method. It is automatically added by Rubberduck’s “add test method” commands, but needs to be added manually if a test method is typed manually in the editor rather than inserted by Rubberduck.

This annotation supports a string argument that determines the test’s category, which appears in the Test Explorer toolwindow and enables grouping by category. If no category argument is specified, “Uncategorized” is used as a default:

@TestMethod("Some Category")
Private Sub TestMethod1()
'...
End Sub

The other @TestXxxxx member annotations are used for setup & teardown. If test settings have the “Test module initialization/cleanup” option selected, then @ModuleInitialize and @ModuleCleanup procedure stubs are automatically added to a new test module. If test settings have “Test method initialization/cleanup” selected, then @TestInitialize and @TestCleanup procedure stubs are automatically added a new test modules.

@TestInitialize

In test modules, this annotation marks procedures that are invoked before every single test in the module. Use that method to run setup/initialization code that needs to execute before each test. Each annotated procedure is invoked, but the order of invocation cannot be guaranteed… however there shouldn’t be a need to have more than one single such initialization method in the module.

@TestCleanup

Also used in test modules, this annotation marks methods that are invoked after every single test in that test module. Use these methods to run teardown/cleanup code that needs to run after each test. Again, each annotated procedure is invoked, but the order of invocation cannot be guaranteed – and there shouldn’t be a need to have more than one single such cleanup method in the module.

@ModuleInitialize

Similar to @TestInitialize, but for marking procedures that are invoked once for the test module, before the tests start running. Use these procedures to run setup code that needs to run before the module’s tests begin to run; each annotated procedure will be invoked, but the order of invocation cannot be guaranteed. Again, only one such initialization procedure should be needed, if any.

@ModuleCleanup

Similar to @TestCleanup, but for marking procedures that are invoked once for the test module, after all tests in the module have executed. Use these procedures to run teardown/cleanup code that needs to run after all module’s tests have completed; each annotated procedure will be invoked, but the order of invocation isn’t guaranteed. Only one such cleanup procedure should be needed, if any.


Annotations are one of Rubberduck’s most useful but unfortunately also one of its most obscure and hard-to-discover features. Fortunately, we have plans to surface them as right-click context menu commands in the 2.5.x release cycle.

Rubberduck v2.4.0

Unlike quite a number of Rubberduck releases, this time we’re not boasting a thousand commits though: we’re looking at well under 300 changes, but if the last you’ve seen of Rubberduck was 2.3.0 or prior, …trying this release you’ll quickly realize why we originally wanted to release it around Christmas.

So, here’s your belated Christmas gift from the Rubberduck dev team!

VBE Project References: CURED!

You may have seen the Introducing the Reference Explorer announcement post last autumn – well, the new feature is now field-tested, works beautifully, instinctively, and is ready for prime time. It’s a beauty!

The add/remove references dialog has seen a number of enhancements since its pre-release: thanks everyone for your constructive feedback!
Quickly locate any type library by name and/or description.
Pin your favorite references, and Rubberduck will keep them handy for all your VBA/VB6 projects.

You’ll never want to use the vanilla-VBE references dialog again!

If you’ve been following the Rubberduck project for quite some time, you may remember something about using annotations together with inspections and quick-fixes to document the presence of module & member attributes. You may also remember when & why the idea was dropped. Keeping in tradition with including new inspections every release… Surprise, it’s coming back!

German, French, and Czech translations have been updated, a number of bugs were fixed in a few inspections, the Code Explorer has seen a number of subtle enhancements, and WPF binding leaks are all but gone.

Code Explorer Enhancements

Adding the Reference Explorer made a perfect opportunity to revisit the Code Explorer toolwindow – our signature navigation feature. Behold, the new Code Explorer:

The new ‘Sync with code pane’ toolbar button (the left/right arrows icon) selects the treeview node closest to the current code pane selection.

There’s a new ‘Library References’ node that shows your project’s library dependencies …whether they’re in use or not:

Find all references can now be used to locate all uses of a given type library – including the built-in standard libraries! Note that rendering lots of search results in a toolwindow will require confirmation if there are too many results to display.

The project reference nodes get new icons:

Classes with a VB_PredeclaredID attribute set to True now have their own icon too (and their names now say (Predeclared) explicitly), and class modules marked with an @Interface annotation now appear with an “interface” icon, like IGameStrategy here:

Annotations & Attributes

They’re back, and this time it does work, and it’s another game changer: Rubberduck users no longer need to export any code file to modify module & member attributes!

Module & Member Annotations

At module level, the @ModuleDescription annotation can be given a string argument that controls the value of the module’s VB_Description attribute; the @Exposed annotation controls the value of the VB_Exposed attribute; the presence of a @PredeclaredId annotation signals a VB_PredeclaredId attribute with a value of True.

At member level, @Description annotations can be given a string argument that controls the value of the member’s VB_Description attribute.

Through inspections, Rubberduck is now able to warn about attributes that don’t have a corresponding annotation, and annotations that don’t have a corresponding attributes. Look for inspection results under the “Rubberduck Opportunities” category.

v2.4.x

The months to come will see further enhancements in several areas; there are several pull requests lined up already – stay tuned, and keep up with the pre-release builds by watching releases on GitHub!

Rubberduck 2.1.x

The release was going to include a number of important fixes for the missing annotation/attribute inspection and quick-fix, but instead we disabled it, along with a few other buggy inspections, and pushed the release – 7 months after 2.0.13, the last release was now over 1,300 commits behind, and we were reaching a point where we knew a “green release” was imminent, but also a point where we were going to have to make some more changes to parts of the core – notably in order to implement the fixes for these broken annotation/attribute inspections.

So we shipped what we had, because we wouldn’t jeopardize the 2.1 release with parser logic changes at that point.

Crossroads

wooden_signpost_at_the_crossroads1
By Hillebrand Steve, U.S. Fish and Wildlife Service [Public domain], via Wikimedia Commons
So here we are, at the crossroads: with v2.1.0 released, things are going to snowball – there’s a lot on our plates, but we now have a solid base to build upon. Here’s what’s coming:

  • Castle Windsor IoC: hopefully-zero user-facing changes, we’re replacing good old Ninject with a new dependency injection framework in order to gain finer control over object destruction – we will end up correctly unloading!

That’s actually priority one: the port is currently under review on GitHub, and pays a fair amount of long-standing technical debt, especially with everything involving menus.

  • Annotation/Attributes: fixing these inspection, and the quick-fix that synchronizes annotations with module attributes and vice-versa, will finally expose VB module and member attributes to VBA code panes, using Rubberduck’s annotation syntax.

For example,  adding '@Description("This procedure does XYZ") on top of a procedure will tell Rubberduck that you mean that procedure to have a VB_Description attribute; when Rubberduck parses that module after you synchronize, it will be able to use that description in the context status bar, or as tooltips in the Code Explorer.

This is considered a serious issue, because it affects pretty much every single inspection. Luckily there’s a [rather annoying and not exactly acceptable] work-around (apply the fix bottom-to-top in a module), but still.

But there’s a Greater Picture, too.

The 2.1.x Cycle

At the end of this development cycle, Rubberduck will:

  • Work in the VB6 IDE;
  • Have formalized the notion of an experimental feature;
  • Have a working Extract Method refactoring;
  • Make you never want to use the VBE’s Project References dialog ever again;
  • Compute and report various code metrics, including cyclomatic complexity and nesting levels, and others (and yes, line count too);
  • Maybe analyze a number of execution paths and implement some of the coolest code inspections we could think of;
  • Be ready to get really, really serious about a tear-tab AvalonEdit code pane.

If all you’re seeing is Rubberduck’s version check, the next version you’ll be notified about will be 2.1.2, for which we’re shooting for 2017-11-13. If you want to try every build until then (or just a few), then you’ll want to keep an eye on our releases page!

2.0.14?

Recently I asked on Twitter what the next RD News post should be about.

next-rdnews-post-survey-results

Seems you want to hear about upcoming new features, so… here it goes!


The current build contains a number of breakthrough features; I mentioned an actual Fakes framework for Rubberduck unit tests in an earlier post. That will be an ongoing project on its own though; as of this writing the following are implemented:

  • Fakes
    • CurDir
    • DoEvents
    • Environ
    • InputBox
    • MsgBox
    • Shell
    • Timer
  • Stubs
    • Beep
    • ChDir
    • ChDrive
    • Kill
    • MkDir
    • RmDir
    • SendKey

As you can see there’s still a lot to add to this list, but we’re not going to wait until it’s complete to release it. So far everything we’re hijacking hooking up is located in VBA7.DLL, but ideally we’ll eventually have fakes/stubs for the scripting runtime (FileSystemObject), ADODB (database access), and perhaps even host applications’ own libraries (stabbing stubbing the Excel object has been a dream of mine) – they’ll probably become available as separate plug-in downloads, as Rubberduck is heading towards a plug-in architecture.

The essential difference between a Fake and a Stub is that a Fake‘s return value can be configured, whereas a Stub doesn’t return a value. As far as the calling VBA code is concerned, that’s nothing to care about though: it’s just another member call:

[ComVisible(true)]
[Guid(RubberduckGuid.IStubGuid)]
[EditorBrowsable(EditorBrowsableState.Always)]
public interface IStub
{
    [DispId(1)]
    [Description("Gets an interface for verifying invocations performed during the test.")]
    IVerify Verify { get; }

    [DispId(2)]
    [Description("Configures the stub such as an invocation assigns the specified value to the specified ByRef argument.")]
    void AssignsByRef(string Parameter, object Value);

    [DispId(3)]
    [Description("Configures the stub such as an invocation raises the specified run-time eror.")]
    void RaisesError(int Number = 0, string Description = "");

    [DispId(4)]
    [Description("Gets/sets a value that determines whether execution is handled by Rubberduck.")]
    bool PassThrough { get; set; }
}

So how does this sorcery work? Presently, quite rigidly:

[ComVisible(true)]
[Guid(RubberduckGuid.IFakesProviderGuid)]
[EditorBrowsable(EditorBrowsableState.Always)]
public interface IFakesProvider
{
    [DispId(1)]
    [Description("Configures VBA.Interactions.MsgBox calls.")]
    IFake MsgBox { get; }

    [DispId(2)]
    [Description("Configures VBA.Interactions.InputBox calls.")]
    IFake InputBox { get; }

    [DispId(3)]
    [Description("Configures VBA.Interaction.Beep calls.")]
    IStub Beep { get; }

    [DispId(4)]
    [Description("Configures VBA.Interaction.Environ calls.")]
    IFake Environ { get; }

    [DispId(5)]
    [Description("Configures VBA.DateTime.Timer calls.")]
    IFake Timer { get; }

    [DispId(6)]
    [Description("Configures VBA.Interaction.DoEvents calls.")]
    IFake DoEvents { get; }

    [DispId(7)]
    [Description("Configures VBA.Interaction.Shell calls.")]
    IFake Shell { get; }

    [DispId(8)]
    [Description("Configures VBA.Interaction.SendKeys calls.")]
    IStub SendKeys { get; }

    [DispId(9)]
    [Description("Configures VBA.FileSystem.Kill calls.")]
    IStub Kill { get; }

...

Not an ideal solution – the IFakesProvider API needs to change every time a new IFake or IStub implementation needs to be exposed. We’ll think of a better way (ideas welcome)…

So we use the awesomeness of EasyHook to inject a callback that executes whenever the stubbed method gets invoked in the hooked library. Implementing a stub/fake is pretty straightforward… as long as we know which internal function we’re dealing with – for example this is the Beep implementation:

internal class Beep : StubBase
{
    private static readonly IntPtr ProcessAddress = EasyHook.LocalHook.GetProcAddress(TargetLibrary, "rtcBeep");

    public Beep() 
    {
        InjectDelegate(new BeepDelegate(BeepCallback), ProcessAddress);
    }

    [UnmanagedFunctionPointer(CallingConvention.StdCall, SetLastError = true)]
    private delegate void BeepDelegate();

    [DllImport(TargetLibrary, SetLastError = true)]
    private static extern void rtcBeep();

    public void BeepCallback()
    {
        OnCallBack(true);

        if (PassThrough)
        {
            rtcBeep();
        }
    }
}

As you can see the VBA7.DLL (the TargetLibrary) contains a method named rtcBeep which gets invoked whenever the VBA runtime interprets/executes a Beep keyword. The base class StubBase is responsible for telling the Verifier that an usage is being tracked, for tracking the number of invocations, …and disposing all attached hooks.

The FakesProvider disposes all fakes/stubs when a test stops executing, and knows whether a Rubberduck unit test is running: that way, Rubberduck fakes will only ever work during a unit test.

The test module template has been modified accordingly: once this feature is released, every new Rubberduck test module will include the good old Assert As Rubberduck.AssertClass field, but also a new Fakes As Rubberduck.FakesProvider module-level variable that all tests can use to configure their fakes/stubs, so you can write a test for a method that Kills all files in a folder, and verify and validate that the method does indeed invoke VBA.FileSystem.Kill with specific arguments, without worrying about actually deleting anything on disk. Or a test for a method that invokes VBA.Interaction.SendKeys, without actually sending any keys anywhere.

And just so, a new era begins.


Awesome! What else?

One of the oldest dreams in the realm of Rubberduck features, is to be able to add/remove module and member attributes without having to manually export and then re-import the module every time. None of this is merged yet (still very much WIP), but here’s the idea: a bunch of new @Annotations, and a few new inspections:

  • MissingAttributeInspection will compare module/member attributes to module/member annotations, and when an attribute doesn’t have a matching annotation, it will spawn an inspection result. For example if a class has a @PredeclaredId annotation, but no corresponding VB_PredeclaredId attribute, then an inspection result will tell you about it.
  • MissingAnnotationInspection will do the same thing, the other way around: if a member has a VB_Description attribute, but no corresponding @Description annotation, then an inspection result will also tell you about it.
  • IllegalAnnotationInspection will pop a result when an annotation is illegal – e.g. a member annotation at module level, or a duplicate member or module annotation.

These inspections’ quick-fixes will respectively add a missing attribute or annotation, or remove the annotation or attribute, accordingly. The new attributes are:

  • @Description: takes a string parameter that determines a member’s DocString, which appears in the Object Browser‘s bottom panel (and in Rubberduck 3.0’s eventual enhanced IntelliSense… but that one’s quite far down the road). “Add missing attribute” quick-fix will be adding a [MemberName].VB_Description attribute with the specified value.
  • @DefaultMember: a simple parameterless annotation that makes a member be the class’ default member; the quick-fix will be adding a [MemberName].VB_UserMemId attribute with a value of 0. Only one member in a given class can legally have this attribute/annotation.
  • @Enumerator: a simple parameterless annotation that commands a [MemberName].VB_UserMemId attribute with a value of -4, which is required when you’re writing a custom collection class that you want to be able to iterate with a For Each loop construct.
  • @PredeclaredId: a simple parameterless annotation that translates into a VB_PredeclaredId (class) module attribute with a value of True, which is how UserForm objects can be used without Newing them up: the VBA runtime creates a default instance, in global namespace, named after the class itself.
  • @Internal: another parameterless annotation, that controls the VB_Exposed module attribute, which determines if a class is exposed to other, referencing VBA projects. The attribute value will be False when this annotation is specified (it’s True by default).

Because the only way we’ve got to do this (for now) is to export the module, modify the attributes, save the file to disk, and then re-import the module, the quick-fixes will work against all results in that module, and synchronize attributes & annotations in one pass.

Because document modules can’t be imported into the project through the VBE, these attributes will unfortunately not work in document modules. Sad, but on the flip side, this might make [yet] an[other] incentive to implement functionality in dedicated modules, rather than in worksheet/workbook event handler procedures.

Rubberduck command bar addition

The Rubberduck command bar has been used as some kind of status bar from the start, but with context sensitivity, we’re using these VB_Description attributes we’re picking up, and @Description attributes, and DocString metadata in the VBA project’s referenced COM libraries, to display it right there in the toolbar:

docstrings-in-rdbar.PNG

Until we get custom IntelliSense, that’s as good as it’s going to get I guess.


TokenStreamRewriter

As of next release, every single modification to the code is done using Antlr4‘s TokenStreamRewriter – which means we’re no longer rewriting strings and using the VBIDE API to rewrite VBA code (which means a TON of code has just gone “poof!”): we now work with the very tokens that the Antlr-generated parser itself works with. This also means we can now make all the changes we want in a given module, and apply the changes all at once – by rewriting the entire module in one go. This means the VBE’s own native undo feature no longer gets overwhelmed with a rename refactoring, and it means fewer parses, too.

There’s a bit of a problem though. There are things our grammar doesn’t handle:

  • Line numbers
  • Dead code in #If / #Else branches

Rubberduck is kinda cheating, by pre-processing the code such that the parser only sees WS (whitespace) tokens in their place. This worked well… as long as we were using the VBIDE API to rewrite the code. So there’s this part still left to work out: we need the parser’s token stream to determine the “new contents” of a module, but the tokens in there aren’t necessarily the code you had in the VBE before the parse was initiated… and that’s quite a critical issue that needs to be addressed before we can think of releasing.


So we’re not releasing just yet. But when we do, it’s likely not going to be v2.0.14, for everything described above: we’re looking at v2.1 stuff here, and that makes me itch to complete the add/remove project references dialog… and then there’s data-driven testing that’s scheduled for 2.1.x…

To be continued…

@Annotations: The Underducks

Some of Rubberduck’s coolest features are literally hidden – not intentionally… but exposing them in the UI just wasn’t a top priority, or proved to be quite complex to implement in a nice user-friendly way.

Sad, because it makes them look like underdogs underducks, when they really deserve to show up front & center.

@Folder

Since v2.0.12, adding a new test module to a VBA project makes it show up under a “Tests” folder in the Code Explorer:

folders

You might be thinking “oh cool, folders!” and then go and try to add one using the Add command, or right-click somewhere to find some “add folder” command, and eventually give up.

Folders aren’t real. VBA doesn’t support folders; the code files aren’t even code files, they’re embedded in a host document! So we can’t just “create a folder” in a VBA project, it has to be something else.

This is what an early-bound 2.0.12 test module’s declarations section looks like:

Option Explicit
Option Private Module
'@TestModule
'@Folder("Tests")

Private Assert As New Rubberduck.AssertClass

Notice the @Folder(“Tests”) comment. Folders don’t really exist, but by annotating code modules like this Rubberduck can make them seem real, at least in the Code Explorer.

You can control which module appears under which folder by modifying the annotation, using the dot (“.”) as a separator:

folders2.PNG

The Code Explorer‘s bottom panel shows the @Folder annotation that’s responsible for creating the selected folder, when a folder is selected (if no folder is specified, everything goes to a default “VBAProject” folder).

In this case:

'@Folder("Tests.Functionality2")

Or whatever you want to make it. When two or more modules have “Tests” as a “root folder”, Rubberduck knows to show these two modules under the same “Tests” folder.

This means large VBA projects with a ton of classes can now be organized in folders for easier browsing, like large VB.NET projects are organized in namespaces. Now VBA doesn’t support namespaces, the rules haven’t changed: you can’t have two same-name modules in the same VBA project regardless of which “folder” you’re putting them in. But it sure makes it much easier to organize things.

The reason we can’t have a simple “create folder” command, is ultimately because VBA doesn’t support folders: we can’t create an empty folder, a folder only exists because there’s a module that has an annotation that created it.

What if there’s more than one annotation?

Rubberduck will only ever use the first @Folder annotation it finds in a module; any subsequent @Folder annotation is ignored. So you can have this:

'@Folder("Tests")
'@Folder("Foo.Bar")

And Rubberduck won’t be confused; the Code Explorer will have that module under the “Tests” folder, and unless there’s another module somewhere that specifies “Foo.Bar”, there won’t be a “Foo.Bar” folder anywhere.

But because multiple @Folder annotations are potentially confusing for us mere mortals, we’ve implemented an inspection that warns you when a module has more than one single @Folder annotation specified:

multiple-folders.PNG

Future versions will probably introduce a quick-fix for that inspection, so that extraneous annotations can be removed without even looking at the code module itself.


@IgnoreModule

Sometimes a single module can be responsible for a lot of inspection results, and that module can’t really be changed/fixed right now because, y’know, reasons – so you’d like to prevent Rubberduck inspections from looking at that module, so you can focus on inspection results from other modules without drowning them in noise from a module you’d like to ignore.

Since 2.0.12 you can now make code inspections completely ignore a specific module, with a single module-level annotation:

'@IgnoreModule

Now that’s great, but it’s also drastic: all inspections will ignore that module. If all you wanted was to shut off the use meaningful names inspection for that module without disabling the inspection itself, you can parameterize the annotation:

'@IgnoreModule UseMeaningfulName

And now only the use meaningful name inspection will be ignored in that module, without turning off the inspection itself.

So how do you know what inspection names to use? These names are the actual internal class names (minus the “Inspection” suffix) of each inspection in the Rubberduck code base itself, so they’re not exactly easy to get if you’re not looking at the Inspections namespace… fortunately the project’s website uses the Rubberduck build itself to create the Inspections/List page, and the inspection names appear in the bullet-list:

all-inspections.PNG

…of course, the website processes the names to insert spaces (based on the PascalCase casing – that’s why ByVal appears as “By Val”), so the actual usable @Ignore and @IgnoreModule annotation parameters are all in that list, except you need to remove the spaces when using them.

The @Ignore annotation uses the same mechanism, except it works at individual inspection result level; the Ignore Once quickfix that’s available for most inspections, automatically inserts @Ignore annotations, but there’s currently no way to automatically add an @IgnoreModule annotation – future versions will most definitely fix that though.

2.0 Beta is here!

A little while ago, we issued an alpha release of Rubberduck 2.0, just because, well, v1.4.3 had been around since July 2015, and we wanted to say “look, this is what we’ve been working on; it’s not nearly stable yet, but we still want to show you what’s coming”.

Time flies. 6 whole weeks, 353 commits (plus a few last-minute ones), 142* pull requests from 8 contributors, 143* closed issues, 60* new ones, 129,835 additions and 113,388 deletions in 788* files later, Rubberduck still has a number of known issues, some involving COM interop, most involving COM reflection and difficulties in coming up with a host-agnostic way of identifying the exact types we’re dealing with.

It might seem obvious, but knowing that ThisWorkbook is a Workbook object is anything but trivial – at this point we know that Workbook implements a WorkbookEvents interface; we also know what events are exposed: we’re this close to connect all the dots and have a resolver that works the way we need it to.

So what does this mean?

It means a number of false positives for a number of inspections. It means false negatives for a number of others.

Other than that, if the last version you used was 1.4.3, you’re going to be blown away. If the last version you used was 2.0.1a, you’ll appreciate all the work that just went into this beta build.

There are a number of little minor issues here and there, but the major issues we’re having pretty much all revolve around resolving identifier references, but I have to admit I don’t like unit test discovery working off the parser – it just doesn’t feel right and we’re going to fix that soon.

Speaking of unit testing… thanks to @ThunderFrame’s hard work, Rubberduck 2.0 unit tests now work in Outlook, Project, Publisher and Visio.

@Hosch250 If you get unit testing to work in outlook I’ll eat my hat.

– @RubberDuck 2016-05-13

So Chris, how’s the hat?

Stay tuned, things are going to snowball from this point on – we’ll be releasing much more often than we have been.

*From the GitHub “Pulse” page between May 7 and June 7, 2016.

VBA Rubberducking (Part 1)

The VBE editor was last updated in 1998 – back when VB6 was all the rage, and the .NET framework was probably just a little more than a nice idea.

Vanilla VBA editor

The VBE was just slightly less full-featured than its standalone counterpart, Visual Studio 6.0; however years went by, and the latest Visual Studio versions make the VBE look like an odd beast from another century.

Enter Rubberduck.

RubberduckVBE

There are other VBE add-ins out there. For many years, VBA (and VB6) devs have loved using MZ-Tools and Smart Indenter – perhaps the two most popular add-ins ever written for the VBE. One has a lightning-fast analyzer that is capable of finding unused declarations, and even locates references in commented-out code; the other offers a highly configurable indenter that lets you instantly apply an indenting style to an entire module, or more surgically to a single procedure. What does Rubberduck bring to the table?

Lots, lots, lots of things.

This post is the first in a series of post that walk you through the various features of the Rubberduck open-source VBE add-in.

Navigation Tools

One of the most frustrating aspects of the VBE, is its limited set navigation tools. Let’s recap what the vanilla VBE gives us:

  • Ctrl+F / “Find” is a little more than a basic text search, that lets you search and replace text in the current procedure, module, project, or selection. Although VBA isn’t case-sensitive, you can match case, and use pattern matching, which isn’t exactly a regex search, but better than nothing.
  • Shift+F2 / “Go to Definition”, is actually fantastic: you can right-click any identifier and jump to its declaration – and if it’s an identifier defined in a referenced library, it takes you to its entry in the Object Browser.
  • Ctrl+R / “Project Explorer” is a dockable toolwindow that lists all opened projects and the modules under them, in a convenient TreeView where you can double-click on a node and navigate there.
  • Ctrl+Shift+F2 / “Last Position” is also fantastic: the VBE keeps a little stack of recent places you’ve been, and works like a “back” browser button that takes you back to where you were before. Quite possibly my personal favorite of all.
  • Bookmarks is under-used… for a reason. You can toggle any line as a bookmark, and cycle through them, but there’s no place to see them all at once.

And… that’s about it. Let’s see what Rubberduck has to offer.

Code Explorer

CodeExplorer

This isn’t the final version (we haven’t released it in 2.0 yet). When it grows up, it wants to be a full-fledged replacement for the Project Explorer. Its default hotkey even hijacks the Ctrl+R shortcut. Here’s what it does that the Project Explorer doesn’t do:

  • Drill down to module members, and then further down to list enum and user-defined type members.
  • See constant values as they appear in code.
  • Navigate not only to any module, but any field, enum member, constant, procedure, property get/let/set accessor, function, imported library functions and procedures.
  • Rename anything.. without breaking the code that references what you’re renaming.
  • Find all references to anything.
  • Indent an entire project, or a selected module.

But the coolest thing is that Rubberduck’s Code Explorer takes special comments like this:

 '@Folder("ProgressIndicator.Logic")

And then renders the module like this:

CodeExplorer-Folders.png

That’s right. Folders. In VBA. Sure, okay, they’re not real folders – it’s a trick, an illusion… but that trick now means that with a simple annotation in every module, you can organize your VBA project the way you want to; you’re no longer forced to search for a class module among 80 others in a large project, you’re free to regroup forms together with their related classes!

This feature alone is a game changer: with it, class modules can become first-class citizen; you don’t have to fear drowning in a sea of modules, and you don’t have to give them funky prefixes to have them sorted in a way that makes it anywhere near decent to navigate.

Find Symbol

One of my favorite ReSharper features, is Ctrl+T / “go to anything”. When I realized we could have this feature in the VBE, I went ahead and did it. This simple feature lets you type the name of any identifier, and locate a specific instance of it:

FindSymbol.png

This includes any variable, constant, type, enum, procedure, function, property, library function/procedure, parameter, …even line labels can be navigated to.

Just Ctrl+T, type something, hit ENTER, and you’re there. Or browse the dropdown list and click that “go” button.

Find all references

Whether you’re looking for all call sites of a procedure in your code, or you’re just curious about how many times you’re using the vbNullString built-in constant, you can right-click any identifier (at the declaration, or any of its references) and Find all references will give it to you, in a convenient tabbed search results toolwindow:

FindAllReferences.png

Double-click any result to navigate there.

Find all implementations

Similar to find all references (its results use the same toolwindow), this one is also one of my favorite ReSharper features, that Rubberduck simply had to implement. It’s only useful when you’re coding against abstractions and implementing interfaces (if you didn’t know… yes, VBA code can do that!) – but then, it’s the best way of navigating to implementations of an interface class or member.

For example, here I added two new class modules, added this line in each, and then implemented the members:

Implements ProgressIndicator

After refreshing the parser state, I can right-click the Execute method in my ProgressIndicator class, select “Find all implementations”, and get this:

FindAllImplementations.png

TODO Explorer

Rubberduck can (well, does actually) spot special markers in comments, and lets you navigate them in a dockable toolwindow – again, double-click navigates there:

todo-explorer.png

Take that, bookmarks! You can group them by marker or by location.

By default, Rubberduck will mark NOTETODO and BUG as interesting, but you can always configure it to whatever suits your needs in the Todo Settings tab of the settings dialog:

todo-settings.png

Regex Search & Replace

Okay, that one’s not really there yet. But it’s totally on the roadmap, and definitely coming in a future version of Rubberduck. Take that, search with pattern!


Whew! That covers Rubberduck’s navigation features. What do you think?

To be continued…

v2.0: 75% there

At least according to our issues list.

I’ve been working on quite a lot of things these past few weeks, things that open up new horizons and help stabilize the foundations – the identifier reference resolver.

Precompiler Directives

And we’ve had major contributions too, from @autoboosh: Rubberduck’s parser now literally interprets precompiler directives, which leaves only the “live” code path for the parsing and resolving to work with. This means you can scratch what I wrote in an earlier post about this snippet:

[…] Not only that, but a limitation of the grammar makes it so that whatever we do, we’ll never be able to parse the [horrible, awfully evil] below code correctly, because that #If block is interfering with another parser rule:

Private Type MyType 
  #If DEBUG_ Then
    MyMember As Long
  #Else
    MyMember As Integer
  #End If
End Type

And this (thoroughly evil) one too:

  #If DEBUG_ Then
    Sub DoSomething()
  #Else
    Sub DoSomethingElse()
  #End If
      '...
    End Sub

Rubberduck 2.0 will have no problem with those… as long as DEBUG_ is defined with a #Const statement – the only thing that’s breaking it is project-wide precompiler constants, which don’t seem to be accessible anywhere from the VBIDE API. Future versions might try to hook up the project properties window and read these constants from there though.

Isn’t that great news?

But wait, there’s more.


Project References

One of the requirements for our resolver to correctly identify which declaration an identifier might be referring to, is to know what the declarations are. Take this code:

  Dim conn As New ADODB.Connection
  conn.ConnectionString = "..."
  conn.Open

Until I merged my work last night, the declarations for “ADODB” and “Connection” were literally hard-coded. If your code was referencing, say, the Scripting Runtime library to use a Dictionary object, the resolver had no way of knowing about it, and simply ignored it. The amount of work involved to hard-code all declarations for the “most common” referenced libraries was ridiculously daunting and error-prone. And if you were referencing a less common library, it was “just too bad”. Oh, and we only had (parts of) the Microsoft Excel object model in there; if you were working in Access or Word, or AutoCAD, or any other host application that exposes an object model, the resolver simply treated all references to these types and their members, as undeclared identifiers – i.e. they were completely ignored.

I deleted these hard-coded declarations. Every single one of them. Oh and it felt great!

Instead, Rubberduck will now load the referenced type libraries, and perform some black magic COM reflection to discover all the types and their members, and create a Declaration object for the resolver to work with.

This enables things like code inspections specific to a given type library, that only run when that library is referenced:

ht6vq

It also enables locating and browsing through references of not only your code, but also built-in declarations:

7wp4x

Doing this highlighted a major performance issue with the resolver: all of a sudden, there was 50,000 declarations to iterate whenever we were looking for an identifier – and the resolver did an awful job at being efficient there. So I changed that, and now most identifier lookups are O(1), which means the resolver now completes in a fraction of the time it took before.

There’s still lots of room for improvement with the resolver. I started to put it under test – the unit tests for it are surprisingly easy to write, so there’s no excuse anymore; with that done, we’ll know we’re not breaking anything when we start refactoring it.

One of the limitations of v1.x was that project references were being ignored. Well, the resolver is now equipped to start dealing with those – that’s definitely the next step here.


Module/Member Attributes

Another limitation of v1.x was that we couldn’t see module attributes, so if a class had a PredeclaredId, we had no way of knowing – so the resolver essentially treated classes and standard modules the same, to avoid problems.

Well, not anymore. The first time we process a VBComponent, we’re silently exporting it to a temporary file, and give the text file to a specialized parser that’s responsible for picking up module and member attributes – then we give these attributes to our “declarations” tree walker, which creates the declaration objects. As a result, we now know that a UserForm module has a PredeclaredId. And if you have a VB_Description attribute for each member, we pick it up – the Code Explorer will even be able to display it as a tooltip!


What about multithreading?

I tried hard. Very hard. I have a commit history to prove it. Perhaps I didn’t try hard enough though. But the parser state simply isn’t thread-safe, and with all the different components listening for parser state events (e.g. StateChanged, which triggers the code inspections to run in the background and the code and todo explorers to refresh), I wasn’t able to get the parser to run a thread-per-module and work in a reliable way.

Add to that, that we intend to make async parsing be triggered by a keyhook that detects keypresses in a code pane, parsing on multiple threads and getting all threads to agree on the current parser state is a notch above what I can achieve all by myself.

So unless a contributor wants to step in and fix this, Rubberduck 2.0 will still be processing the modules sequentially – the difference with 1.x is the tremendous resolver performance improvements, and the fact that we’re no longer blocking the UI thread, so you can continue to browse (and modify!) the code while Rubberduck is working.

What’s left to do for this to work well, now that the parsing and resolving is stabilized, is to allow graceful cancellation of the async task – because if you modify code that’s being parsed or resolved, the parser state is stale before the task even completes.

To be continued…

(hint: IDE-integrated source control)

What’s the big deal with folders?

If you’re a seasoned VBA developer, you probably have your “VBA Toolbox” – a set of classes that you systematically include in pretty much every single new VBA project.

Before you’ve even written a single line of code, your project might look something like this already:

ProjectExplorer

The VBE’s Project Explorer gives you folders that regroup components by component type: forms in a folder, standard modules in another, and classes in another.

That’s great ok for small projects, perhaps. But as your toolbox grows, the classes that are specific to your project get drowned in a sea of class modules, and if you’re into object-oriented programming, you soon end up finding needles in a haystack. “But they’re sorted alphabetically, it’s not that bad!” – sure. And then you come up with all kinds of prefixes and naming schemes to keep related things together, to trick the sorting and actually manage to find things in a decent manner.

The truth is, this sucks.

Now picture this:

You shouldn’t have to care about a component’s type. Since forever, the VBE has forced VBA developers to accept that it could possibly make sense to have completely unrelated forms grouped together, and completely unrelated classes together, just because they’re the same type of VBA objects.

But it doesn’t have to be this way. I like how Visual Studio /.net lets you organize things in folders, which [can] define namespaces, which are a scope on their own.

There’s not really a concept of namespaces inside a VBA project: you could simulate them with standard modules that expose global objects that regroup functionality, but still every component in a project is accessible from anywhere in that project anyway. And who needs namespaces anyway?

Rubberduck 2.0 will not give you namespaces – that would be defying the VBA compiler (you can’t have two classes with the same name in the same project). What it will give you though, is folders.

Cool! How does it work?

Since the early versions of Rubberduck, we’ve been using @annotations (aka “magic comments”) in the unit testing feature, to identify test modules and test methods. Rubberduck 2.0 simply expands on this, so you can annotate a module like this:

'@Folder Foo.Bar

And that module will be shown under a “Bar” folder, itself under a “Foo” folder. How simple is that! We’ll eventually make the delimiter configurable too, so if you prefer this:

'@Folder Foo/Bar

Then you can have it!

With the ability to easily organize your modules into a “virtual folder hierarchy”, adhering to the Single Responsibility Principle and writing object-oriented code that implies many small specialized classes, is no longer going to clutter up your IDE… now be kind, give your colleagues a link to Rubberduck’s website 😉


The Code Explorer

The goal behind the Code Explorer feature, is to make it easier to navigate your VBA project. It’s not just about organizing your code with folders: since version 1.21, the Code Explorer has allowed VBA devs to drill down and explore a module’s members without even looking at the code:

CodeExplorer-expanded

The 2.0 Code Explorer is still under development – but it’s coming along nicely. If you’re using the latest release (v1.4.3), you’ll notice that this treeview has something different: next release every dockable toolwindow will be an embedded WPF/XAML user control, which means better layouts, and an altogether nicer-looking UI. This change isn’t being done just because it’s prettier: it was pretty much required, due to massive architectural changes.

Stay tuned!

Blue Print of 2.x

The foundation of the project needed a bit of clean-up and restructuring. The Big Refactoring is now pretty much completed, and with it, summer 2015’s feature freeze:

Feature-freeze until this is completed. We need to implement proper DI/IoC and make the code testable, if not tested. No ifs, no buts.

So we’re ready to start implementing the new features of 2.0. But before, we need to reconnect the pieces, by moving code from the 1.x “RubberduckMenu” and “RefactorMenu” classes, and into these “ICommand” implementations.


 

So, What’s Cooking?

Tons. The new architecture allows us to write code that is aware of the host application. This means Unit Testing commands can be disabled when the host is Outlook, for example (it seems executing VBA code on-demand from a VBE add-in isn’t possible in Outlook – ideas welcome). It also means we can write code inspections that warn about implicit references to Application.ActiveWorkbook in Excel, but that don’t run when the host application is Access, Word, or PowerPoint. Things like that, and…

Regex Search & Replace is coming. We’ll need a way to hijack Ctrl+F and Ctrl+H!

Smart Indenter is coming. The owners of this awesome add-in have graciously offered their source code to the Rubberduck project a while ago already; 2.0 isn’t releasing without an embedded Smart Indenter!

More grammar fixes on the way. This means fewer parser errors, more accurate inspections, navigation and refactorings, i.e. a more reliable tool.

Source Control Integration continues to improve, and early minor releases of 2.x will likely see a new WPF/XAML UI.

More translations have been completed since the last release: 2.0 will speak English, French, Swedish, German, Japanese… and every other translation we receive a PR for in the next.. uh… …6-8 weeks.

Shiny new UI. Docked gridviews are turning into WPF treeviews; the “Rubberduck” menu has been revamped, and under the hood, everything changed. Might as well make 2.0 look like as much change happened!

Code Inspections and Quick-Fixes that take the host application into account, giving recommendations tailored for a given host API. Also, some of the coolest inspections we envisioned as fantasies a year ago, are now possible to implement.

More refactoring tools like inline method, encapsulate field and promote local. The early minor releases of 2.x will likely see a new WPF/XAML UI for the refactorings issued in 1.x.


 

Something really good is cooking.

We’re also looking at implementing a more VBA-like Assert class, that would be more permissive with AreEqual and AreNotEqual than the current (C#-like strict) implementation is. Test results will be copied to clipboard or exported/serialized to XML with a simple click.

If you write some C# and would like to contribute to Rubberduck, note that our GitHub repository has a bunch of up-for-grabs issues opened, a lot of which are critical (i.e. no fix, no release) – the faster all functionalities work off the new command architecture, the faster we can deliver a pre-release…

Stay tuned!